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Executive Summary

Since August 2010, the U.S. Fish and Wildlife Service (USFWS) has conducted aerial seabird surveys as
part of the Atlantic Marine Assessment Program for Protected Species (AMAPPS). All surveys were
conducted using the fixed-wing Quest Kodiak aircraft flown at 110 knots and 70 m (200 ft) altitude,
while an observer and pilot-observer counted all seabirds, sea turtles, and marine mammals within
400m-width strip transects. Transects paralleled the latitudinal lines and were spaced roughly every 5
nm at latitudes ending in xx°x1’ N and xx"x6’ N. Prior to August 2011, all surveys were flown with
transects that extended east from the coastline to either the 30m depth contour or no more than 50nm
from the nearest point of land. In August 2011, transects were extended to the 30 m depth contour and
all subsequent surveys flew these longer transect lines. The August 2010 survey covered the Atlantic
coast south of the North-South Carolina border (33°51’ N) to the southern tip of Florida (24°30’ N),
including the Florida Keys. Surveys flown in December 2010 and January 2011 (Winter 1) targeted the
mid-Atlantic region from Atlantic City, NJ (39°11" N) to Wilmington, NC (34°36’ N), including Delaware
Bay and Chesapeake Bay. Since August 2011, all surveys have covered the entire U.S. Atlantic coast from
the U.S.-Canadian border (44°46’ N) to Cape Canaveral, FL (28°26" N).

More than 780,000 observations have been recorded and entered into our database. These data
represent a statistically rigorous survey design that monitors seabird occurrence and abundance from
the coastline out to depth of 30m unless that depth exceeds more than 50nm from the nearest point of
land. Surveys have been conducted across all seasons although we found the summer to have few
seabirds present in our sampled area. After our initial summer surveys in 2010 and 2011 we shifted
efforts to fall, winter and spring which have a greater abundance of seabirds.

This report summarizes the raw data from these surveys and presents initial, uncorrected densities per
square kilometer surveys for Northern Gannets and a set of species groups. We are developing
statistical methods and conducting additional surveys in order to better understand detectability issues
and biases associated with our fleet aircraft.



Introduction

The assessment program described here was designed as a comprehensive effort to collect data
required to estimate abundance and develop seasonally specific, localized density estimates for marine
mammals, marine turtles, and seabirds. The program has coordinated the data collection and analysis
efforts of the NMFS Northeast and Southeast Fisheries Science Centers and the U.S. Fish and Wildlife
Service Division of Migratory Birds. The original proposal focused on objectives that addressed the
immediate needs of the funding agencies, BOEM and The Navy, that included: 1) Collect broad-scale
data over multiple years on the seasonal distribution and abundance of marine mammals (cetaceans
and pinnipeds), marine turtles, and seabirds using direct aerial and shipboard surveys of coastal U.S.
Atlantic Ocean waters; 2) Conduct tag telemetry studies within surveyed regions of marine turtles,
pinnipeds and seabirds; 3) Explore alternative platforms and technologies to improve population
assessment studies; 4) Assess the population size of surveyed species at regional scales; and 5) Develop
models and associated tools to translate these survey data into seasonal, spatially-explicit density
estimates incorporating habitat characteristics.

Nine surveys have been flown between August 2010 and October 2014. Crews flew 103,634km
(55,958nm) of strip transects survey seabirds, sea turtles and marine mammals. Our database, not
including two surveys, contains more than 780,000 records of seabird observations. Division of
Migratory Bird staff are processing data from the final two surveys. All error-checked data have been
submitted the Atlantic Seabird Catalog at the request of BOEM.



Methods

Survey design:

Transects are located at 5’ (~5 nm) intervals at every *1’ and *6’ minute of latitude and extend out to
the 30m depth contour or nor more than 50 nm from the nearest land (Figure 1). Transects are
numbered by their latitude ID (degrees/minutes, e.g., 3436 for 34036’N); two additional digits that index
multiple segments along a transect. Most transects have only a single segment, which is identified by
00. For transects with multiple segments (which may be separated by land or open water or may be
contiguous), the digits 00 identify the most westerly transect, 01 indicates the next transect to the east,
etc. Continuous transects that are divided into multiple sections cross survey strata (e.g, 365600,
365601, and 365602 at the mouth of the Chesapeake Bay); their start and stop points should be
recorded, even if counting is not interrupted. Transect length depends on the survey being flown and
the location along the coast. For the AMAPPs surveys, transects extend 30 nm offshore. Transects
extend from Cape Canaveral, FL to the US-Canada border.

Figure 1. USFWS AMAPPS seabird survey design
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Survey Procedures (SOP):

Surveys were flown in USFWS fleet Kodiak amphibious aircraft, Quest Inc., with the exception of the
summer 2010 surveys (Figure 2). The summer 2010 surveys were flown using older fleet aircraft; a twin
engine Partenavia P68 Observer and a Cessna amphibious aircraft. All surveys are flown at a height of
200ft above ground level (AGL) and a speed of 110 kts. All seabirds, turtles and marine mammals
observed within a 400m wide transect are recorded to the lowest taxonomic level possible along with
number of individuals and for all observers, other than the pilot, the distance band. Our survey specific
SOP is outlined below. Each survey crew is provided a set of maps depicting each transect overlaid on
aviation maps as well as a set of GPX files that can be loaded on each aircraft’s GPS unit for navigation
(Figure 3).

Figure 2. USFWS fleet aircraft used in AMAPPS aerial seabird surveys. Counterclockwise from
bottom left: Quest Kodiak, Partenavia P68 Observer, Cessna 206 Amphib.




Figure 3. Example crew map of transects overlaid on aviation charts for
Charleston, SC area.
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Transect width are marked on either the wing strut or window using a grease pencil or dry erase marker.
Crew members are required to mark the 200m outer edge of the transect before starting the first
transect in their crew area. This is done with the use of a standard clinometer and marking a 17° angle
on some portion of the aircraft. Preferably this is done while on the ground to eliminate the effect of
any turbulence. Observers on the right side of the aircraft also have to mark the 100m boundary (31°
angle) since they record data into multiple distance bins.

All data are recorded to hard drives using software developed by the USFWS for aerial surveys.
Observations are recorded using the program Record (Version 6.4, 2/11/2009) that stores each
detection in a WAV file while GPS coordinates, GPS error and time since midnight are logged for every
observation. Afterwards, the observer uses a program, Transcribe (Version 3.1, 3/13/2008), that allows
the user to enter the data recorded on each WAV file and merges those data with the appropriate GPS
location and timestamp.

Survey SOPs

- Surveys should be flown at 110 kts, at a height of 200 ft.
- Initiate surveys when wind speed < 15 kts, discontinue if winds exceed 20 kts.

- Transect width is 200m on either side of the aircraft. (The approximate actual transect width
will be determined by the observer’s ability to see under the plane. If available, please use a
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clinometer to estimate inner transect boundary.) At an altitude of 200 ft, the 200m boundary is
at a 17° angle from horizontal and the 100m boundary is at 31°.

Record “BEGSEG” and “ENDSEG” (required by recording program used in USFWS aircraft) at the
start and finish of each east-west transect, including continuous lines broken into distinct
transects, such as those over Pamlico Sound and the mouths of Chesapeake and Delaware Bay.
Transcribe this code in the species/type field.

Transcribe the six digit segment number (e.g., 382100) in the count field for every BEGSEG and
ENDSEG record.

If counting is suspended for any reason between the BEG and ENDSEG (technical difficulties,
airsickness, flying over land, etc.), record “ENDCNT” to mark the break. Record “BEGCNT” when
surveying resumes.

Record all sea ducks, diving ducks, and other seabirds observed from the edge of the waterline
eastward, including birds associated with exposed shoals. Do not record birds sitting on pilings,
jetties, beaches, boats, in trees, etc. Birds should be in the air over water or on the water.

Birds flying above the plane should be recorded, if they are within the transect.
Record all marine mammals and turtles observed on transect.

All commercial fishing boats should be recorded with the code TRAWL along with the
perpendicular distance (nm) from the transect line (including boats >200m from the plane).

Balloons (deflated, floating on the surface) within the transect should be recorded with the code
BALN.

Report all sea ducks and seabirds to the lowest taxonomic level possible.
See Appendix 5.1 for a list of species abbreviations.

For mixed flocks seen within the transect boundaries:
0 Used species code MIXD
0 Inthe count field, code the entire mixed flock size
0 Add a comment to the end of that transcribed record with species proportions e.g.,
MIX,500, 25% SUSC; 50% BLSC; 25% WWSC. Exact counts of species are preferable, if
known. It is also preferable to record the comment without commas, as the Transcribe
program uses commas to delimit variable fields.

Record observation conditions on a 5-point Likert scale in the “Condition” header field. You
should consider all factors influencing observation conditions when recording this (e.g., sea
state, glare, observer alertness, etc). Use the following codes:
0 1,2,3,4,5with 1=Worst observation conditions, 3 = Average condition, and 5 = Best
observation conditions.

Enter the condition code in the condition field at the start of each transect and for each
observation; when conditions change, using the code COCH in the species/type field to indicate
“condition change.” Include the new condition value in both the condition field and the count
field.
Observers will record two additional pieces of information with each record (i.e., pilots are
excluded):
(1) the 100 m band within which the bird was observed:
1=[0,100m], 2 = (100,200m], 0 = within 200m, band unknown.
(Any birds recorded outside the 200m band should be coded as band = 3 and the offline
code should be “y;” these records are not within the survey protocol.)



(2) if the bird was flying (F); Code non-flying birds with (S); and unknown as (0)

Data and File Management:

All files on the aircraft computer are backed up daily by the flight crew onto USB drives and then
copied to hard drive on a laptop. At the end of the survey all files including the raw WAV, track files
and transcribed data files are uploaded to the Department of the Interior (DOI) AMAPPS SharePoint
site by crew area. Once the files are received by staff at Patuxent Wildlife Research Center, a series
of R programs are run to check for data entry errors and to format the raw data for input into a
Microsoft Access (MS Access Version 14.0.7143.5000) database (Appendix 5.2).

We also maintain a geodatabase representing all spatial information related to survey design
transects, what we actually fly each survey (tracks) and observations. This geodatabase was created
and maintained using ESRI ArcGIS (Version 10.2.2). We use this geodatabase to calculate how far
from the coast, water depth and slope of the bottom for each observation.

- Make certain each computer’s time and date are correct and that they are SYNCHRONIZED
(clock synchronization is especially important for the data quality control for this survey,
because we have no segment files to check against the entries you include for your location and
because transect numbering can be prone to mis-entry).

- The Survey Name (and folder) for the Record and Transcribe programs will be provided to you at
the beginning of the survey. If you switch survey planes or are relieved by a new observer,
please move your files into a subfolder named with your initials.

- Crew names: crew names are designated by the four digit latitude of the northernmost
transect. E.g., the northern crew will be Crew4446, which is the northernmost survey line.

- Please record any partial or missed transects in the SurveyNotes.xls file provided. Record any
other deviations from the SOP and relevant survey details/comments in this file.

- Files names: each observer should have one data file for each survey day. The files should be named
Crew##it** MODAYEAR_birds.txt, where Crewtt is the crew name (see above), ** = If for the
pilot and rf (or rr, or Ir) for the observer, MO = two digit month, DA = two digit day (e.g., 01 for the
first day of the month), and YEAR = four digit year. For example, Crew4446lf 02082012 _birds.txt
includes the pilot’s observations for Feb 8, 2012 Crew4446.

- There should be two track files submitted for every survey day. The corresponding track file names
are Crew#iH#** _MODAYEAR_track.txt.

- Backups of all files (track and sound files, as well as any transcribed files) from each computer
should be made nightly onto the USB drive that belongs to that computer.

- Transcribed data files and pilot and observer track files should be uploaded regularly to the
survey sharepoint site (the URL of this site will be included in the pre-survey materials), not less
than every 5 survey days.

- At the end of the survey, a zipped file containing all ASCII data files, the pilot and observer track
files, and the SurveyNotes CREWAREA.xIs file should be sent to the survey coordinator.



Order of data fields in the transcribed file:
Header fields:

- Year (4 digits, 2011)

- Month (1 digit, 1 or 2) no leading zeros

- Day (1 or 2 digits) no leading zeros

- Seat (2 digits, If, rf, rr, or Ir)

- Observer (your 3 initials in lowercase letters ... please use THREE initials!)

- Transect (6 digits, line #s will be the latitude degrees concatenated with the latitude minutes
and then with the segment number [00, 01, etc.]. Typically there will be just one line segment
“00,” but when more than one segment occurs on the same latitude you might also have
segment “01”, etc., e.g., line on 36 deg 21 min, segment 00 = 362100.

- Observation condition (1 digit, 1-5)

- Offline (1 character, “n” = online/within the 200m width while on transect, “y” = offline)

Fields created by Hodges programs automatically:

- Species/type code
- Count (this is the count you enter into the count window in Hodge’s program — if a flock crosses
the 200m transect edge, include only those birds within the transect)

Additional fields:

- Distance Band (1 — 0-100m, 2- 100-200m, or 0 if unknown)
- Bird flight status (F = flying; S = sitting on water; 0 = unknown)
- Comment on composition of MIXD records

Training

In February 2012 we held a field training event for USFWS observers and pilots on the Outer Banks of
North Carolina. The goals of this training were to a) increase the identification ability of our biologist-
pilots and observers and b) expose new observers to aerial survey experience. USFWS biologist-pilots
have been using aerial surveys to count breeding and non-breeding waterfowl for more than 50 years
and seaducks for more than 4 years. Seabirds represented a new and unfamiliar group of birds rarely
encountered by our biologist-pilots and observers. We contracted with Brian Patteson, an expert in
seabird identification that runs a pelagic birding company out of Hatteras, NC.

The first day of the training consisted of reviewing our survey protocols and a presentation by Brian
Patteson reviewing the likely seabirds that could be encountered along the U.S. Atlantic Coast. During
this presentation, he reviewed the range of the species and identification tips. The second day was
spent aboard the Stormy Petrel Il for our biologist-pilots and observers to see a wide array of seabirds
(Figures 4 and 5). The third day we introduced the observers who had never participated in an aerial
survey the chance to experience survey conditions. All flights were conducted from Dare County
Regional Airport in Manteo, NC. Due to water temperatures all participants were required to wear
survival suits and practiced identifying and counting seabirds on two transects just off of the coast near

7



the airport. Observers were introduced to aircraft safety procedures as well as using the computers for
recording data.

Figure 4. Participants of seabird survey training in February 2012. Back row from left to right:

Troy Wilson, Mark Koneff, Melanie Steinkamp, Emily Silverman, Jim Wortham, Dean Demarest,
and Sarah Yates. Middle row from left to right: Walt Rhodes, Tim Jones, Steve Earsom, Mao Lin,
Holiday Obrecht, and ?. Front row from left to right: Eric Kirshner, Jeff Shenot and Jeff Leirness.
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Figure 5. Seabirds observed during the seabird identification training session off Hatteras, NC.

Clockwise from top left: Common Loon, adult Northern Gannet, juvenile Northern Gannet, Great
Shearwater.

Analysis

Analyses have focused on how to describe sparse, yet highly aggregated counts of seabirds. Such
patterns of abundance make estimating total numbers of individuals difficult and may provide biased
estimates of uncertainty. Staff worked with personnel from the USGS Patuxent Wildlife Research Center
to evaluate a set of statistical distributions that can describe highly right-skewed distribution of flock
frequencies (Zipkin et al. 2012; Appendix 3). Current efforts are focused on understand detectability and
biases associated with our fleet aircraft. We also are examining whether we can develop a statistical
model that would allow us to impute species identification on certain guilds of species.



Results

USFWS conducted nine seabird surveys between August 2010 and October 2014 (Table 1). Crews flew
103,634km (55,958nm) of strip transects survey seabirds, sea turtles and marine mammals. The surveys

Table 1. Surveys flown by the U.S. Fish and Wildlife Service as part of the Atlantic Marine
Assessment Program for Protected Species.

Survey # #
Survey Start Date End Date Distance (km)  Transects Replicates
2010 August August 3 August 24 5,421 115 62
2010 December  December 3 December 11 2,164 89 0
2011 January January 16 January 17 619 22 0
2011 August July 30 August 23 13,979 267 8
2012 March March 15 March 31 13,784 282 0
2012 October September 29  October 12 13,914 283 0
2013 September September 16  September 28 17,112 266 0
2014 February January 28 February 12 20,564 285 0
2014 October October 6 October 22 16,077 189 0

in August 2010 did not conform to our survey design due to the Gulf Qil Spill. In response to that
incident BOEM agreed to our shifting the survey transect south and into the eastern Gulf of Mexico
(Figure 6A). In December 2010 we flew our first that went further than 8-10nm offshore (Figure 6B).
The remainder of the surveys generally followed the survey design but varied due to weather or
mechanical difficulties with the aircraft (Figures 6C-6H). Due to availability we are not able to maintain
consistent crews over all the surveys but track observers to account for different detection probabilities
among observers (Table 2).

Total counts and number transects for each species or species group observed are presented in Tables
3-7. Due to our data analyst leaving these summaries are not available for the 2013 and 2014 surveys at
this time. Number of marine mammals and sea turtles observed during all surveys between 2010 and
2012 are presented in Table 8.

Raw density estimates per square kilometer were calculated for all aerial surveys from 2010 through
2012. Until we can correct these raw densities based on detectability the only species we are
comfortable mapping individually is Northern Gannet. All other species were grouped into higher
taxonomic groupings that included: alcids; gulls; loons; terns, sea and diving ducks; marine mammals
and sea turtles. The results are shown in Figures 7 - 17.
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Figure 6. Transect lines flown by the U.S. Fish and Wildlife Service as part of the Atlantic Marine
Assessment Program for Protected Species surveys completed in (A) August 2010, (B) December
2010 and January 2011, (C) August 2011, (D) March 2012, (E) October 2012, (F) Septermber
2013, (G) February 2014 and (H) October 2014.
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Table 2: Survey crews.

Survey Crew*  Pilot(s) Observer(s)
2010 August 2941 Mark D. Koneff Doug J. Forsell
3351 James S. Wortham Emily R. Bjerre
2010 December 3916 James S. Wortham Doug J. Forsell & M. Tim Jones
2011 January 3726 James S. Wortham Timothy P. White
2011 August 3606 Walt E. Rhodes M. Tim Jones
4116 James S. Wortham Dean W. Demarest
4311 Fred H. Roetker Holliday H. Obrecht
2012 March 3316 Walt E. Rhodes M. Tim Jones
3651 Stephen D. Earsom Eric. L. Kershner
4056 James S. Wortham & Caleb S. Speigel, Dean W. Demarest, &
Mark D. Koneff Melanie J. Steinkamp
4446 Mark D. Koneff Mao T. Lin & Sarah F. Yates
2012 October 3316 Walt E. Rhodes M. Tim Jones
3756 Stephen D. Earsom Eric. L. Kershner
4056 James S. Wortham Mao T. Lin
4446 Mark D. Koneff Sarah F. Yates
2013 September 3316 Fred H. Roetker M. Tim Jones
3651 James S. Wortham Pam Loring
4056 Stephen D. Earsom Mao T. Lin
4446 Mark D. Koneff Mao T. Lin
2014 February 3316 Fred H. Roetker Caleb S. Speigel
3651 James S. Wortham Robert Simmons
4056 Stephen D. Earsom Mike Chouinard
4446 Mark D. Koneff Mao T. Lin
2014 October 3521 James S. Wortham Fred H. Roetker & M. Tim Jones
4126 Stephen D. Earsom M. Tim Jones
4446 Mark D. Koneff Sarah F. Yates

*Numbers indicate the latitude (degrees-minutes) of the northernmost transect in the crew area.
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Table 3: Total count (unique number of transects) for all seabirds identified during the August 2010

survey.
Species Group Species Crew2941 Crew3351 Total
Alcids Unidentified large alcid - 89 (20) 89 (20)
Black skimmer 15 (1) - 15 (1)
Herring gull 1(1) 65 (24) 66 (25)
Laughing gull 51 (15) - 51 (15)
Ring-billed gull 8(5) 9(1) 17 (6)
Unidentified black-backed gull - 183 (18) 183 (18)
Unidentified large gull 10 (4) 8(8) 18 (12)
Unidentified small gull - 42 (10) 42 (10)
Larids Unidentified gull - 1,125(32) 1,125(32)
Brown noddy 2(2) - 2(2)
Bridled tern 2(2) - 2(2)
Least tern 2(1) - 2(1)
Roseate tern 66 (21) - 66 (21)
Unidentified large tern 33(12) 22 (10) 55(22)
Unidentified small tern 9(8) 3(3) 12 (11)
Unidentified tern 10 (5) 33(15) 43 (20)
Northern gannet 5(4) 284 (42) 289 (46)
Brown booby 1(1) - 1(1)
Pelicaniforms Double-crested cormorant 109 (8) - 109 (8)
Unidentified cormorant 1(1) - 1(1)
Magnificent frigatebird 15 (8) - 15 (8)
Brown pelican 66 (15) 269 (20) 335 (35)
Unidentified petrel 1(1) - 1(1)
Tubenoses Unidentified shearwater 4 (4) 1(1) 5(5)
Wilson's storm-petrel 4 (3) - 4 (3)
Unidentified storm-petrel - 6 (3) 6 (3)
Unidentified seabird or diving duck 20 (24) 564 (37) 584 (61)
Unidentified phalarope - 1(1) 1(1)
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Table 4: Total count (uniqgue number of transects) for all seabirds identified during the December
2010 and January 2011 surveys.

Species Group Species Crew3726 Crew3916 Total
Bufflehead 4(1) 723 (16) 727 (17)
Long-tailed duck 1(1) 34 (8) 35(9)
King eider - 6 (1) 6 (1)
Common goldeneye - 49 (6) 49 (6)
Unidentified goldeneye - 32 (4) 32 (4)
Red-breasted merganser - 9(2) 9(2)
Unidentified merganser - 3(1) 3(1)
Sea ducks Unidentified goldeneye or merganser - 9(2) 9(2)
Black scoter 6 (1) 717 (24) 723 (25)
Surf scoter 26 (5) 458 (12) 484 (17)
White-winged scoter - 3(1) 3(1)
Dark-winged scoter - 9(1) 9(1)
Unidentified scoter - 88 (4) 88 (4)
Unidentified sea duck 7(2) 10 (5) 17 (7)
Diving ducks Unidentified scaup - 197 (4) 197 (4)
Common loon 66 (15) 33 (11) 99 (26)
Loons Red-throated loon 16 (6) 194 (33) 210 (35)
Unidentified loon 57 (14) 283 (45) 340 (51)
Razorbill 3(2) - 3(2)
Alcids Unidentified large alcid 3(3) - 3(3)
Unidentified alcid - 5(1) 5(1)
Bonaparte's gull - 510 (50) 510 (50)
Great black-backed gull 4(2) 40 (17) 44 (19)
Herring gull 55 (4) 71 (30) 126 (34)
Laughing gull - 36(17) 36 (17)
Ring-billed gull - 508 (37) 508 (37)
Unidentified black-backed gull - 13 (9) 13 (9)
Unidentified large gull 31 (1) 55 (16) 86 (17)
Larids Unidentified small gull - 9(7) 9(7)
Unidentified gull 35(13) 536 (54) 571 (61)
Black-legged kittiwake 17 (9) - 17 (9)
Forster's tern - 6 (1) 6 (1)
Royal tern - 10 (3) 10 (3)
Unidentified large tern - 21 (8) 21 (8)
Unidentified small tern - 36 (8) 36 (8)
Unidentified tern - 37 (15) 37 (15)
Northern gannet 2,237 (15) 1,566 (61) 3,803 (63)
Pelicaniforms Double-crested cormorant 3(2) 155 (9) 158 (11)
Unidentified cormorant 1(1) 167 (7) 168 (8)
Brown pelican - 23 (7) 23 (7)
Tubenoses Unidentified shearwater - 99 (3) 99 (3)
Unidentified storm-petrel - 1(1) 1(1)
Unidentified seabird or diving duck 13 (5) 851 (59) 864 (59)
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Table 5: Total count (unique number of transects) for all seabirds identified during the August

2011 survey.

Species
Group Species Crew3606 Crew4116 Crew4311 Total
Bufflehead - 8 (1) - 8(1)
Long-tailed duck - - 1(1) 1(1)
Common eider - - 264 (7) 264 (7)
Sea ducks Unidentified eider - - 153 (4) 153 (4)
Unidentified merganser - - 6 (3) 6 (3)
Black scoter - - 248 (17) 248 (17)
Unidentified scoter - - 61 (2) 61 (2)
Common loon - - 2(2) 2(2)
Loons Red-throated loon - - 16 (7) 16 (7)
Unidentified loon - - 3(3) 3(3)
. Dovekie - - 1(1) 1(1)
Alcids Unidentified alcid i i 32(7) 32 (7)
Great black-backed gull 10 (4) 113 (32) 204 (42) 327 (77)
Herring gull 9 (5) 269 (50) 687 (65) 965 (116)
Iceland gull 1(1) - - 1(1)
Laughing gull 565 (77) 8 (5) 3(1) 576 (83)
Ring-billed gull 1(1) 36 (16) 62 (22) 99 (39)
Unidentified black-backed gull - 1(1) 135 (23) 136 (24)
Unidentified large gull 5(4) 60 (18) 478 (27) 543 (48)
Unidentified small gull - 1(1) 283 (28) 284 (29)
Unidentified gull 309 (13) 419 (26) 1,876(48) 2,604 (83)
. Caspian tern 3(3) - - 3(3)
Larids Common tern - - 8 (3) 8(3)
Forster's tern 18 (8) - 1(1) 19 (9)
Gull-billed tern 25 (6) - - 25 (6)
Least tern 347 (36) 6(2) 32 (16) 385 (54)
Royal tern 38 (24) 4 (4) - 42 (28)
Unidentified large tern 690 (77) 218 (37) 3(3) 911(117)
Unidentified medium tern 80 (31) - - 80 (31)
Unidentified small tern 103 (25) 314 (56) 32(7) 449 (88)
Unidentified tern 352 (55) 7(3) 958 (58) %’131157)
Northern gannet - 2(2) 252 (30) 254 (32)
Double-crested cormorant 16 (6) 40 (8) 105 (14) 161 (27)
Pelicaniforms  Unidentified cormorant 3(1) 51 (10) 402 (34) 456 (44)
Brown pelican 470 (48) 121 (9) - 591 (57)
White-tailed tropicbird 1(1) - - 1(1)
Northern fulmar - - 14 (6) 14 (6)
Black-capped petrel 1(1) - - 1(1)
Audubon's shearwater 2(2) - - 2(2)
Tubenoses Cory's shearwater 169 (29) - 23 (8) 192 (37)
Great shearwater 6 (3) - 221 (34) 227 (37)
Sooty shearwater - - 14 (8) 14 (8)
Unidentified shearwater 45 (9) - 463 (40) 508 (49)
Unidentified storm-petrel - 90 (21) 274 (36) 364 (57)
:J:(l:ientlfled seabird or diving 87 (30) 40 (6) 1(1) 128 (37)
Unidentified phalarope 186 (23) 130(1) 61 (13) 377 (37)




Table 6: Total count (unique number of transects) for all seabirds identified during the March 2012 survey.

Species Group  Species Crew3316 Crew3651 Crew4056 Crew4446 Total
Bufflehead - 593 (12) 1,036 (11) 75(8) 1,704 (31)

Harlequin duck - - 65 (2) - 65 (2)

Long-tailed duck - 13 (2) 224 (9) 2,345(43) 2,582 (54)

Common eider - - - 5,714 (53) 5,714 (53)

Unidentified eider - - - 25 (2) 25 (2)

Common goldeneye - 3(2) 13 (3) 29 (6) 45 (11)

Unidentified goldeneye - - - 24 (4) 24 (4)

Sea ducks Common merganser - 12 (2) - 14 (2) 26 (4)
Red-breasted merganser - 105 (6) 3(1) 872 (33) 980 (40)

Unidentified merganser - 55 (10) 13 (8) 17 (3) 85 (21)

Black scoter 40 (4) 2,285(11) 370 (15) 283 (10) 2,978 (40)

Surf scoter - 279 (8) 1,855 (21) 213(7) 2,347 (36)

White-winged scoter - 2(2) 26 (5) 898 (24) 926 (31)

Dark-winged scoter - - 110(11) 1,375(18) 1,485(29)

Unidentified scoter - 1,004(9) 1,385(21) 468(21) 2,857 (51)

Unidentified sea duck 25 (1) 106 (6) 12 (4) 3(1) 146 (12)

L Redhead - - 3(1) - 3(1)
Diving ducks ;i dentified scaup 8 (1) - 509 (4) 34 (3) 551 (8)
Red-necked grebe - - 4(2) - 4(2)

Grebes Unidentified grebe ; ; 1(1) 2(1) 3(2)
Common loon 28 (16) 381 (47) 155 (45) 320 (56) 884 (164)

Loons Red-throated loon 242 (34) 977 (56) 586 (46) 693 (37) %’1479:
Unidentified loon 69 (8) 10’?2%‘; 278 (37) 25 (8) 10';‘75;;

Dovekie - - - 67 (12) 67 (12)

Razorbill - 1(1) - 527(13) 528 (14)

Alcids Black guillemot - - - 60 (9) 60 (9)
Unidentified murre - - - 124 (11) 124 (11)

Atlantic puffin - - - 14 (4) 14 (4)

Unidentified alcid - 2(2) 91(9) 465 (27) 558 (38)

Bonaparte's gull 117 (25) 2,051 (30) 36 (4) 2(2) 2,206 (61)

Great black-backed gull - 27 (17) 82 (19) 1(1) 110 (37)

Herring gull 28 (16) 3,174 (54) 477 (48) 3,636 (65) 1138135)

Laughing gull 95 (26) 4 (3) 3(2) - 102 (31)

Lesser black-backed gull 1(1) - 1(1) - 2(2)

Ring-billed gull 221 (38) - 15(4)  333(23) 569 (65)

Unidentified black-backed gull 2(2) 7 (4) 36 (10) 131 (37) 176 (53)

Unidentified large gull - - 35 (14) - 35 (14)

Unidentified small gull 1(1) 3(2) 99 (20) 79 (8) 182 (31)

Larids Unidentified gull 66 (31) 3,125 (63) 109 (26) 1(1) 3(132011)
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Table 6 (cont): Total count (unique number of transects) for all seabirds identified during the March

2012 survey.
Species
Group Species Crew3316 Crew3651 Crew4056 Crew4446 Total
Parasitic jaeger - 1(1) - - 1(1)
Pomarine jaeger - 1(1) - - 1(1)
Black-legged kittiwake - - 1(1) 303 (15) 304 (16)
Caspian tern 1(1) - - - 1(1)
. Forster's tern 1(1) - - - 1(1)
Larids Least tern 2(2) - - - 2(2)
Royal tern 223 (47) 114 (32) - - 337(79)
Unidentified large tern 92 (35) 5(4) 14 (9) - 111 (48)
Unidentified small tern 21 (11) 38 (16) - - 59(27)
Unidentified tern 177 (40) 96 (33) 51 (11) - 324 (84)
Northern gannet 634 (51) 5,156 2,433 287 (38) 8,510
(67) (62) (218)
Double-crested 98 (11) 25(10) 50 (7) - 173 (28)
cormorant
Unidentified cormorant - 3(1) 45 (5) 6 (2) 54 (8)
Pelicaniforms Brown pelican 192 (33) 49 (15) 63 (2) - 304 (50)
Unidentified albatross - 1(1) - - 1(1)
Northern fulmar - - 7(2) - 7(2)
Audubon's shearwater 1(1) - - - 1(1)
Cory's shearwater 2(2) 5(3) - - 7 (5)
Great shearwater - 3(3) 6 (3) - 9(6)
Manx shearwater - 1(1) - - 1(1)
Unidentified 1(1) 1(1) 2(2) - 4 (4)
shearwater
Unidentified storm- - - 1(1) - 1(1)
petrel
Unidentified seabird or 29 (11) 47 (19) 41 (20) 24 (14) 141 (64)
diving duck
Unidentified phalarope 1,592 4,484 21 (5) - 6,097
(17) (22) (44)
Tubenoses Unidentified albatross - 1(1) - - 1(1)
Northern fulmar - - 7(2) - 7(2)
Audubon's shearwater 1(1) - - - 1(1)
Cory's shearwater 2(2) 5(3) - - 7(5)
Great shearwater - 3(3) 6 (3) - 9 (6)
Manx shearwater - 1(1) - - 1(1)
Unidentified 1(1) 1(1) 2(2) - 4 (4)
shearwater
Unidentified storm- - - 1(1) - 1(1)
petrel
Unidentified seabird or 29 (11) 47 (19) 41 (20) 24 (14) 141 (64)
diving duck
Unidentified phalarope 1,592 4,484 21 (5) - 6,097
(17) (22) (44)




Table 7: Total count (uniqgue number of transects) for all seabirds identified during the October 2012

survey.
Species
Group Species Crew3316 Crew3756 Crew4056 Crew4446 Total
Long-tailed duck - - - 5(1) 5(1)
Common eider - - - 322(19) 322(19)
Sea ducks White-winged scoter - - - 8(2) 8(2)
Unidentified scoter - - - 98 (10) 98 (10)
Unidentified sea duck - - - 12 (1) 12 (1)
Grebes Unidentified grebe - - - 1(1) 1(1)
Common loon - - - 41 (22) 41 (22)
Loons Red-throated loon - - 12 (5) 1(1) 13 (6)
Unidentified loon - - 3(2) 3(2) 6 (4)
Dovekie - - - 1(1) 1(1)
Alcids Black guillemot - - - 9(5) 9 (5)
Unidentified alcid - - - 20 (6) 20 (6)
Bonaparte's gull 143 (6) 164 (11) - - 307(17)
Glaucous gull - 7 (1) - - 7 (1)
Great black-backed gull 1(1) 248 (31) 75 (21) - 324(53)
Herring gull 685(14) 183 (31) 758(49) 1,014 (73) 2('1%47‘;
Laughing gull 688 (45) 18 (8) 14 (4) 1(1) 721(58)
Lesser black-backed gull - - 84 (13) - 84 (13)
Little gull - - 2(2) - 2(2)
Ring-billed gull 5(3) 12 (2) 76 (26) 133(22) 226(53)
Unidentified black-
backed gull - 14 (9) 1(1) 169 (33) 184 (43)
Unidentified large gull 4(2) 20 (1) - - 24 (3)
Unidentified small gull 2 (1) 2(2) 75 (25) - 79 (28)
Larids Unidentified gull 293 (14) 1,806 (51) 504 (14) 19 (12) 2'(69212)
Black-legged kittiwake - - - 153 (20) 153 (20)
Caspian tern 2 (1) - - - 2 (1)
Least tern 590 (14) - - - 590(14)
Little tern 12 (1) - - - 12 (1)
Roseate tern - 1(1) - - 1(1)
Royal tern 71(20) 193 (46) - - 264 (66)
Unidentified large tern 1,835 (53) 30 (11) 1(1) 59 (5) 1'(97205)
Unidentified medium 5(2) i i i 5(2)
tern
Unidentified small tern 268 (19) 37 (11) 1(1) 3(2) 309(33)
Unidentified tern 978(35) 418(26) 38 (11) 21 (4) 1'(47565)
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Table 7 (cont): Total count (unique number of transects) for all seabirds identified during the
October 2012 survey.

Species
Group Species Crew3316 Crew3756 Crew4056 Crew4446 Total
Northern gannet - 1(1) 247 (50) 240 (41) (498;
Double-crested 6,060
cormorant - 5757(14) i 303(3) (17)
L . - 154
Pelicaniforms  Unidentified cormorant - - 90 (7) 64 (9) (16)
Magnificent frigatebird 1(1) - - - 1(1)
American white pelican - 70 (1) - - 70 (1)
Brown pelican 108 (20) 1,000 (22) 11 (4) - 1'(14169)
Audubon's shearwater 8 (5) - - - 8 (5)
Cory's shearwater 97 (21) 81 (11) - - (137;))
Noeoses Gt 20 o E0 86
chearwater 17 (6) 1(1) 6 (6) 24 (12) 48(25)
Unidentified storm- i i 1(1) 1(1) 2(2)
petrel
Unidentified seabird or
diving duck 41 (3) 9(1) 38 (18) 5(4) 93(26)
. . 171
Unidentified phalarope 149 (20) 17 (2) - 5(2) (24)
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Table 8: Total count for all marine mammals and sea turtles identified.

August Dec 2010 & August March October
Species Group  Species 2010 Jan 2011 2011 2012 2012
Bottlenose dolphin 24 16 - - 48
Risso's dolphin - - - - 6
Unidentified spotted dolphin 2 - - - -
Unidentified dolphin 145 31 626 336 182
West indian manatee 3 - - - -
Marine Unidentified porpoise - - 5 1 2
mammals Unidentified seal - - - 11 7
Common minke whale - - 1 - -
Fin whale - - - 1
Humpback whale - - 1 1 -
Unidentified whale - - 6 3 2
Unidentified marine mammal 1 - - - -
Green sea turtle 7 - - 5 15
Kemp's ridley sea turtle 2 - 2 1 1
Sea turtles Leatherback sea turtle 3 - 22 7 6
Loggerhead sea turtle 152 1 184 92 184
Unidentified sea turtle 182 - 248 262 72
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Figure 7: Transect density (total count per sq. km) for (A) alcids, (B) gulls, (C) loons, (D) northern
gannets, (E) terns, (F) sea ducks and diving ducks, (G) marine mammals, and (H) sea turtles from
the August 2010 survey. Transects are colored according to density: gray (zero density), light blue
(0.01 to 1.00 count per sg. km), yellow (1.01 to 10.00 count per sq. km), orange (10.01 to 100.00
count per sg. km), red (>100 count per sq. km).
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Figure 8: Transect density (total count per sq. km) for (A) alcids, (B) gulls, (C) loons, (D) northern
gannets, (E) terns, (F) sea ducks and diving ducks, (G) marine mammals, and (H) sea turtles from the
December 2010 and January 2011 surveys. Transects are colored according to density: gray (zero
density), light blue (0.01 to 1.00 count per sg. km), yellow (1.01 to 10.00 count per sq. km), orange
(10.01 to 100.00 count per sqg. km), red (>100 count per sq. km).
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Figure 9: Transect density (total count per sq. km) for (A) alcids, (B) gulls, (C) loons, (D) northern

(G) marine mammals, and (H) sea turtles from the

northern region of the August 2011 survey. Transects are colored according to density: gray (zero

density), light blue (0.01 to 1.00 count per sq. km),

’

gannets, (E) terns, (F) sea ducks and diving ducks

yellow (1.01 to 10.00 count per sqg. km), orange

(10.01 to 100.00 count per sq. km), red (>100 count per sq. km).
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Figure 10: Transect density (total count per sq. km) for (A) alcids, (B) gulls, (C) loons, (D) northern

gannets, (E) terns, (F) sea ducks and diving ducks, (G) marine mammals, and (H) sea turtles from the

mid-Atlantic region of the August 2011 survey. Transects are colored according to density: gray (zero

density), light blue (0.01 to 1.00 count per sg. km), yellow (1.01 to 10.00 count per sq. km)

(10.01 to 100.00 count per sqg. km), red (>100 count per sq. km).
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Figure 11: Transect density (total count per sq. km) for (A) alcids, (B) gulls, (C) loons, (D) northern
gannets, (E) terns, (F) sea ducks and diving ducks, (G) marine mammals, and (H) sea turtles from the
southern region of the August 2011 survey. Transects are colored according to density: gray (zero
density), light blue (0.01 to 1.00 count per sg. km), yellow (1.01 to 10.00 count per sq. km), orange
(10.01 to 100.00 count per sqg. km), red (>100 count per sg. km).
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(C) loons, (D) northern
and (H) sea turtles from the

’

Figure 12: Transect density (total count per sq. km) for (A) alcids, (B) gulls

(G) marine mammals,

7

gannets, (E) terns, (F) sea ducks and diving ducks

northern region of the March 2012 survey. Transects are colored according to density: gray (zero

yellow (1.01 to 10.00 count per sq. km), orange

(10.01 to 100.00 count per sqg. km), red (>100 count per sq. km).

7’

density), light blue (0.01 to 1.00 count per sg. km)
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Figure 13: Transect density (total count per sq. km) for (A) alcids, (B) gulls, (C) loons, (D) northern
gannets, (E) terns, (F) sea ducks and diving ducks, (G) marine mammals, and (H) sea turtles from the
mid-Atlantic region of the March 2012 survey. Transects are colored according to density: gray (zero
density), light blue (0.01 to 1.00 count per sq. km), yellow (1.01 to 10.00 count per sq. km), orange

(10.01 to 100.00 count per sq. km), red (>100 count per sq. km).
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Figure 14: Transect density (total count per sq. km) for (A) alcids, (B) gulls, (C) loons, (D) northern
gannets, (E) terns, (F) sea ducks and diving ducks, (G) marine mammals, and (H) sea turtles from the
southern region of the March 2012 survey. Transects are colored according to density: gray (zero
density), light blue (0.01 to 1.00 count per sg. km), yellow (1.01 to 10.00 count per sq. km), orange
(10.01 to 100.00 count per sqg. km), red (>100 count per sq. km).
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(C) loons, (D) northern
and (H) sea turtles from the

’

Figure 15: Transect density (total count per sq. km) for (A) alcids, (B) gulls

, (G) marine mammals,

gannets, (E) terns, (F) sea ducks and diving ducks

northern region of the October 2012 survey. Transects are colored according to density: gray (zero

yellow (1.01 to 10.00 count per sq. km), orange

(10.01 to 100.00 count per sqg. km), red (>100 count per sq. km).

density), light blue (0.01 to 1.00 count per sg. km),
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Figure 16: Transect density (total count per sq. km) for (A) alcids, (B) gulls, (C) loons, (D) northern
gannets, (E) terns, (F) sea ducks and diving ducks, (G) marine mammals, and (H) sea turtles from the

mid-Atlantic region of the October 2012 survey. Transects are colored according to density: gray
(zero density), light blue (0.01 to 1.00 count per sq. km), yellow (1.01 to 10.00 count per sq. km),
orange (10.01 to 100.00 count per sq. km), red (>100 count per sg. km).
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Figure 17: Transect density (total count per sq. km) for (A) alcids, (B) gulls, (C) loons, (D)
northern gannets, (E) terns, (F) sea ducks and diving ducks, (G) marine mammals, and (H)
sea turtles from the southern region of the October 2012 survey. Transects are colored
according to density: gray (zero density), light blue (0.01 to 1.00 count per sg. km), yellow
(1.01 to 10.00 count per sg. km), orange (10.01 to 100.00 count per sq. km), red (>100 count
per sg. km).
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Appendix 1. Species Codes used in AMAPPS
database

Species codes:

BLSC = Black scoter
SUSC = Surf scoter
WWSC = White-winged scoter

DWSC = Dark-winged scoter (i.e., unidentified

BL/SUSC)
SCOT = unidentified scoter
LTDU = Long-tailed duck
COEIl = Common eider
KIEI = King eider
EIDE = unidentified eider
COME = Common merganser
RBME = Red-breasted merganser
HOME = Hooded merganser
MERG = unidentified merganser
BAGO = Barrow’s goldenye
COGO = Common goldeneye
GOLD = unidentified goldeneye
GOME = unidentified goldeneye/merganser
BUFF = Bufflehead
HARD = Harlequin duck
CANV = Canvasback
REDH = Redhead
RNDU = Ring-necked duck
SCAU = Scaup spp.
GRSC = Greater scaup
LESC = Lesser scaup
DUCK = unidentified sea duck
HOGR = Horned grebe
RNGR = Red-necked grebe
UNGR = unidentified grebe
COLO = Common loon
RTLO = Red-throated loon
LOON = unidentified loon
ATPU = Atlantic puffin
BLGU = Black guillemot
COMU = Common murre
DOVE = Dovekie
RAZO = Razorbill
TBMU = Thick-billed murre
UNMU = unidentified murre
UNLA = unidentified large alcid
ALCD = unidentified alcid
BBGU = Black-backed gull
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BLKI = Black-legged kittiwake

BOGU = Bonaparte’s gull

GBBG = Greater black-backed gull

GLGU = Glaucous gull

HERG = Herring gull

ICGU = Iceland gull

LAGU = Laughing gull

LBBG = Lesser black-backed gull

LIGU = Little gull

RBGU = Ring-billed gull

UNLG = Large gull

UNSG= Small gull

GULL = unidentified gull

UNLT = unidentified large tern (e.g., Caspian,
Royal, Roseate)

UNMT = unidentified medium tern (e.g.,
Forster’s, Gull-billed, etc.)

UNST = unidentified small tern (e.g., Least,
Arctic, Common)

UNTE = unidentified tern

ARTE = Arctic Tern

BRTE = Bridled Tern

COTE = Common Tern

FOTE = Forster's Tern

GBTE = Gull-billed Tern

LETE = Least Tern

ROST = Roseate Tern

ROYT = Royal Tern

SOTE = Sooty Tern

BLTE = Black Tern

CATE = Caspian Tern

BRNO = Brown Noddy

BLSK = Black skimmer

NOFU = Northern fulmar

AUSH = Audubon’s shearwater

BCPE = Black-capped petrel

COSH = Cory’s shearwater

GRSH = Greater shearwater

SOSH = Sooty shearwater

MASH = Manx shearwater

UNSH = unidentified shearwater

UNSP = unidentified storm-petrel

LHSP = Leach’s Storm-petrel



WISP = Wilson’s Storm-petrel
BSTP = Band-rumped Storm-petrel
NOGA = Northern gannet

DCCO = Double-crested cormorant
GRCO = Great cormorant

UNCO = unidentified cormorant
BRPE = Brown pelican

AWPE = American white pelican
MAFR = Magnificent frigatebird
RBTR = Red-billed Tropicbird
WTTR = White-tailed Tropicbird

BIRD = unidentified seabird or diving duck

Other species recorded:

Sharks and Rays:
GWSH = Great white shark

SHAR = unidentified shark
MARA = Manta ray
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UNRA = unidentified ray

Sea Turtles:

GRST = Green sea turtle

LEST = Leatherback sea turtle
LOST = Loggerhead sea turtle
KRST = Kemp's ridley sea turtle
UIST = unidentified sea turtle

Marine Mammals:

BODO = Bottlenose dolphin

UNSD = unidentified spotted dolphin
DOLP = unidentified dolphin

PORP = unidentified porpoise

HUWH = Humpback whale

PIWH = Pilot whale

RIWH = Right whale

WHAL = unidentified whale

GRSE = Gray seal

SEAL = unidentified seal

WIMA = West Indian manatee
UNMM = unidentified marine mammal




Appendix 2. Database Field Glossary

Microsoft Access Database - Atlantic_Coast_Surveys

ACWSD

ACWSDreport

AvgCondition
Band

CommonName

Condition

Crew

Day
Depth

Dist2Coast_ m
Dist2Coast_nm
DistFlown
EndDt
FlockSize

GpsError

indicator for whether or not transect was surveyed as part of the Atlantic
Coast Winter Sea Duck Survey
indicator for whether or not transect was included in 2009 - 2011 Atlantic
Coast Winter Sea Duck Survey report analysis
distance-weighted average observation condition
survey band in which bird was located (perpendicular to flight path):
0 = unknown or not recorded
1 = less than 100 meters from plane
2 =100 to 200 meters from plane

species common name
observation condition (measured on a 5-point Likert scale: 1 = poor and 5
= excellent)
crew name (typically designated by the four digit latitude of their
northern-most transect)
day the transect was surveyed
water depth for each observation (units = meters); negative values are
meters below sea level (e.g., -1 means water depth for this observation
was 1 meter below sea level)
distance each observation is from the coast (units = meters)
distance each observation is from the coast (units = nautical miles)
distance surveyed on a transect by an observer (units = nautical miles)
date the transect survey ended
number of individuals observed at a given location
error associated with geographic coordinates recorded during surveys
(value of -1 indicates that latitude, longitude, or seconds value was

interpolated based on surrounding data points)
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ImputedDistFlown

Lat

LatinName

Long
MissingTrackFile
Month

Obs

Obslinitials
ObsName
Pillnitials
PilName

Replicate

Seat

Sec

Slope

Species

indicator for whether or not distance flown was imputed (due to
unknown transect BEG/END points) by using crew member’s distance
flown value

latitude in decimal degrees (GCS = WGS84)

species Latin (scientific) name

longitude in decimal degrees (GCS = WGS84)

indicator for whether or not track file from observer was missing

month the transect was surveyed

observer initials

initials of non-pilot observer(s)

name of non-pilot observer(s)

initials of pilot(s)

name of pilot(s)

transect replicate number for a particular survey (1 = first time transect
was flown, 2 = second time transect was flown, etc.)

observer seat in plane:

If = left front (i.e., pilot)

rf = right front

Ir = left rear

rr =right rear

time in seconds from midnight as recorded by the computers’ internal
clock (specific to each observer)

NOTE: observers were asked to set computer clocks to local time, but this
was not always done; therefore, this value should not be used as a proxy
for time of day

steepness of the ocean bottom based on changes in water depths (units =
degrees)

four letter code used to identify observations during survey (AOU band

code was used when possible; see Species_Information table for details)
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StartDt
SurveyDescription

SurveyNbr

SurveyEndDt
SurveyStartDt

Transect

Type

WindArea

date the transect survey started

brief description of survey

unique survey ID:

1 =2008 Preliminary ACWSD

2 =2009 ACWSD

3=2010 ACWSD

4 =2010 Preliminary AMAPPS

5 = December 2010 wind area additional flying

6 = January 2011 wind area additional flying

7 =2011 ACWSD

8 =2011 Summer AMAPPS

9 = 2012 Southern BLSC Survey

10 = 2012 Mid-Atlantic Detection Survey

11 = 2012 Spring AMAPPS

12 = 2012 Fall AMAPPS

date the survey ended

date the survey started

unique ID for each survey line; the first four digits represent latitude in
degrees decimal minutes and the last two digits indicate segment
number

type of GPS track point:

BEGTRAN = beginning of transect

ENDTRAN = end of transect

BEGCNT = start counting again

ENTCNT = stop counting while on transect

COCH = location where observation condition changed along transect
WAYPNT = GPS point along transect

indicator for whether or not transect covers proposed BOEM offshore

wind development area off Chesapeake Bay
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Year

year the transect was surveyed

ESRI ArcMap Geodatabase - Atlantic_Coast_Surveys

Observations

Tracks

Transect_Information

Point shapefile containing the location of seabird and sea duck
flocks along the Atlantic Coast and the habitat covariates
associated with each flock. Fields are the same as the
Observations table located in the Atlantic_Coast_Surveys Access
database.

Point shapefile containing the location of each track point along a
given transect. Fields are the same as the Tracks table located in
the Atlantic_Coast_Surveys Access database.

Polyline shapefile containing all transects surveyed during the
2008 - 2012 Atlantic Coast surveys. Fields are the same as the
Transect_Information table located in the Atlantic_Coast_Surveys

Access database.
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Appendix 3. Fitting statistical distributions to sea duck count data: Implications for survey design and
abundance estimation
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distributions to sea duck count data: Implications for survey design and abundance estimation.
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Determining appropriate statistical distributions for modeling
animal count data is important for accurate estimation of abun-
dance, distribution, and trends. In the case of sea ducks along the
U.S. Atlantic coast, managers want to estimate local and regional
abundance to detect and track population declines, to define
areas of high and low use, and to predict the impact of future
habitat change on populations. In this paper, we used a modified
marked point process to model survey data that recorded flock
sizes of Common eiders, Long-tailed ducks, and Black, Surf, and
White-winged scoters. The data come from an experimental aerial
survey, conducted by the United States Fish & Wildlife Service
(USFWS) Division of Migratory Bird Management, during which
east-west transects were flown along the Atlantic Coast from
Maine to Florida during the winters of 2009-2011. To model the
number of flocks per transect (the points), we compared the fit
of four statistical distributions (zero-inflated Poisson, zero-inflated
geometric, zero-inflated negative binomial and negative binomial)
to data on the number of species-specific sea duck flocks that were
recorded for each transect flown. To model the flock sizes (the
marks), we compared the fit of flock size data for each species
to seven statistical distributions: positive Poisson, positive negative
binomial, positive geometric, logarithmic, discretized lognormal,
zeta and Yule-Simon. Akaike’s Information Criterion and Vuong's
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closeness tests indicated that the negative binomial and discretized
lognormal were the best distributions for all species for the
points and marks, respectively. These findings have important
implications for estimating sea duck abundances as the discretized
lognormal is a more skewed distribution than the Poisson and
negative binomial, which are frequently used to model avian
counts; the lognormal is also less heavy-tailed than the power
law distributions (e.g., zeta and Yule-Simon), which are becoming
increasingly popular for group size modeling. Choosing appropriate
statistical distributions for modeling flock size data is fundamental
to accurately estimating population summaries, determining
required survey effort, and assessing and propagating uncertainty
through decision-making processes.

Published by Elsevier B.V.

1. Introduction

Effective management of wildlife populations requires high quality estimates of population
abundance and distribution with associated measures of uncertainty. Managers use abundance
estimates to determine population status, for comparison to environmental carrying capacities, and to
monitor population trends [44]. Understanding patterns of abundance and aggregation is necessary at
both regional and local scales to evaluate the impacts of conservation actions and human disturbance.
Obtaining accurate population indices is difficult, however, because animals are often unevenly
and unpredictably distributed [8,9,43]; for example, counts often include many zeros [19,30] and
distributions of count data can be extremely right skewed [4,17]. The problem is compounded by a
need for consistent repeated estimates over time; yet, sufficient data to characterize highly aggregated
species distributions are expensive to collect and maintain. The choice of appropriate statistical
models for wildlife count distributions is fundamental for consistency and efficiency of abundance
and distribution estimation and to facilitate more reliable uncertainty assessments [48].

Waterfowl managers are especially interested in population estimates for five species of North
American sea ducks (Tribe Mergini) that winter in large numbers off the Atlantic coast of the
United States (Sea Duck Joint Venture 2003). Data from a variety of sources suggest that Common
eiders (Somateria mollissima), Long-tailed ducks (Clangula hyemalis), and Black, Surf, and White-
winged scoters (Melanitta nigra, M. perspicillata, and M. fusca) may be declining [36,42], and proposed
offshore energy development has the potential to significantly alter their wintering habitat [13,15,25].
Waterfowl managers need accurate and precise coast-wide winter abundance indices to assess trends
and set annual harvest regulations, while energy regulators need predictions of spatial variation
in abundance to inform responsible site placement of offshore structures and to guide future
development activities.

During the winter, sea ducks form large foraging flocks, but can also be found alone or in small
groups [7]. Their distributions can shift within and between years, due to changes in habitat, weather,
and prey availability [18,24,26,52], and they can be found up to 40 miles from land [41]. As a result,
effective monitoring surveys are expensive, dangerous, and fraught with logistical challenges. If the
resulting data are to be worth collecting, then appropriate statistical models to interpret the data need
to be available and accessible.

The United States Fish and Wildlife Service (USFWS) Division of Migratory Bird Management
initiated an experimental aerial survey, conducted from Maine to Florida in the winters of 2009-11, to
assess the feasibility and effectiveness of a long-term winter sea duck monitoring program along the
Atlantic coast. Determining whether precise estimates of regional annual abundance are possible for
the five target species is necessary to evaluate the effectiveness of the survey. To meet these objectives,
we explore the fit of a set of statistical models to data from the Atlantic coast wintering sea duck
survey. Our goals are: (1) to identify a model, or models, that accurately describes the distribution
of counts, characterized by an unusually heavy right tail and an excessive number of zeros; (2) to
determine if the best model choice varies by species; and (3) to compare parameter estimates among
species and assess whether more refined models (e.g., that stratify regions by high and low density
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or include habitat covariates) and/or data collection efforts are necessary. Identifying a parsimonious
model is of primary importance because monitoring programs require repeated, timely estimates that
are easy to explain and robust to unexpected data reduction or other survey changes. Thus, analytically
complex and data-hungry approaches are ill-advised for management-oriented monitoring programs.

The most challenging problem we face is characterizing a count distribution with an extreme
variance to mean ratio, as is often observed in sea duck data [52]. Identifying appropriate statistical
distributions for analyzing count data of animal populations is an ongoing area of investigation
in ecology. For reasons based on first principles and for convenience, the Poisson distribution has
frequently been used [8] and is popular in modeling avian species (e.g., [ 14,28]). Yet the assumption
that the variance equals the mean often does not hold for many seabird species, which are known
to form large flocks. The negative binomial distribution, which allows the variance to exceed the
mean, is used as an alternative to the Poisson to characterize the count distributions for species
where spatial aggregation is known to occur (e.g., [2,11,49]). The negative binomial distribution
is the result of a Poisson-Gamma mixture and converges to the Poisson distribution as the shape
parameter, k, approaches infinity (Appendix A). Okubo [34] recommended the geometric distribution
- a discrete analog to the exponential distribution and also a special case of the negative binomial
where the shape parameter equals one - to handle extremely large group sizes and demonstrated
its applicability for a number of taxa including birds. Empirical evidence suggests, however, that the
negative binomial and geometric models do not adequately capture observed distributions of counts
for some populations, especially those that are found in very large group sizes, such as some fish and
bird species. Ma et al. [29] derived a logarithmic distribution from first principles based on rules for
when individuals should join and leave groups; this model has outperformed the Poisson and negative
binomial distributions in studies of house sparrows [17] and seabirds [21]. Ma et al. [29] additionally
pointed out that the logarithmic can be derived as a limiting case of the negative binomial distribution
as the shape parameter (k, Appendix A) approaches zero (see also [39]), placing it in the context of
other distributions used to model ecological count data.

More recently, the power law distribution has been proposed for modeling group sizes when the
variance to mean ratio is much larger than can be accommodated by the aforementioned models [3,4].
Several studies have demonstrated that the power law distribution fits well to a number of empirical
examples including populations of fish, seabirds, and mammals [10,2,22,23,45]. However, the power
law distribution (using ecologically relevant parameter ranges) is capable of producing extremely
large counts (e.g., in the millions; [10]), which are not realistic for most sea duck species. The power
law can be truncated or combined with an exponentially decaying function [33] to address this
problem. In fact, Ma et al. [29] pointed out that the logarithmic distribution itself is a discrete form
of a power law distribution with an exponential cutoff, where the power law exponent is —1 and
the upper tail decays exponentially above a cutoff that is directly related to the average group size
experienced by an individual. Bonabeau et al. [4] also presents mechanistic models of group size that
lead to power law distributions with exponential decay.

Other heavy-tailed distributions exist and should be considered in a model selection context before
concluding that “power law-like” behavior observed in empirical data necessarily indicates a power
law distribution [10]. These include the Yule-Simon and the discretized lognormal distributions,
which themselves can be viewed, respectively, as limiting distributions of stochastic preferential
attachment or multiplicative growth processes [10,31]. Given the diversity of possibilities, a model
selection framework would be useful to guide choices of appropriate distributions to model highly
skewed ecological count data [2].

In this paper, we test the fit of a series of over-dispersed statistical distributions, from the negative
binomial to the power law, to counts of sea duck flock sizes; we also assess the fit of a series of over-
dispersed models to the distribution of flock frequencies. Our assessment is a critical first step in the
applied statistical work needed for the development of rigorous survey designs, power analysis, risk
and impact assessments, and optimal management strategies for sea ducks. Appropriate modeling
of the basic underlying distributional characteristics of avian count data is critical for making strong
inferences about the distribution of target populations, particularly in the marine environment where
logistics are inherently more difficult than in terrestrial systems and reliance upon statistical models
is correspondingly greater.
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2. Methods

2.1. Data collection

The USFWS aerial survey was conducted along the Atlantic coast from the US-Canadian border
(44° 46'N) to Jacksonville, FL (30°21'N) between January and March, 2009-2011. Four fixed-wing
aircraft were flown along east-west transects spaced systematically at intervals of five minutes of
latitude (approximately 5 nm apart). These transects extended east from the coastline to the longer of
two distances: 8 nm or the distance to 16 m depth. Transects ranged in length from 1 to 80 nm (with
95% of transects between 4.8 and 46.4 nm). The mean transect length was 17.9 nm (standard deviation:
12.8 nm) with transects less than 8 nm in areas that span bays and longer transects paralleling the
shoreline in complicated coastal areas (e.g., Long Island Sound).

The survey crews, which consisted of an observer and pilot-observer, flew at 110 knots and 70 m
altitude, while counting sea ducks and other aquatic birds within 400 m-width strip transects (the
observer counts a 200 m strip on one side of the plane while the pilot does the same on the opposite
side). After completing their entire set of transect lines, each crew flew north to their first east-west
transect line and replicated every other transect from north to south. The replicate surveys were
conducted approximately one week after the first surveys and do not duplicate the original track
exactly, making the possibility of recounting the same individuals remote. The three scoter species
are difficult to distinguish reliably in the field, leading to a large number of scoters identified only to
genus (Melanitta spp.). As such, we focused our analyses on generic scoter species (records for all three
species combined with unidentified scoters), along with the Common eider and Long-tailed duck. We
refer to these two species and one genus as the “species groups” of interest.

Surveys were conducted from 1 to 18 February in 2009, 23 January to 2 March in 2010, and
31 January to 17 February in 2011. Due to the vagaries of field operations, transects and replicates
varied somewhat between years. We use data from the 236 transects, and 76 replicates that were
successfully surveyed in all three years. Common eider and Long-tailed ducks do not winter in the
southern portions of the survey area, and so models fit for them are based on fewer transects (88 for
Common eiders, of which 21 were replicated; 173 for Long-tailed ducks, of which 54 were replicated).

The data consist of observations along survey transects recording the (1) location, (2) species, and
(3) number of birds seen at the location. We refer to the group of birds recorded at one location
(including single birds) as a “flock”, and the number of birds seen as the “flock size”. Note that birds are
counted only within the transect boundaries, while the actual flock might have extended well beyond.

2.2. Analysis

To estimate the abundance of sea ducks by species, we represent the data as a modified marked
point process [12,20] where the flocks are the points and the size of the flocks, discrete and
independent of the points, are the marks. The point process is summarized by transect: we first model
the flock counts (i.e., number of flocks) on each transect, and then model the flock sizes, conditional
on the number of flocks observed. Preliminary analyses indicated large variations and only small
correlations in the number of species-specific flocks (points) among neighboring transects (0.23 for
Common eiders, 0.41 for Long-tailed ducks, and 0.24 for scoters), due in part to zero-zero neighbors
in areas of low density. This suggests that the number of flocks on one transect is not predictive of
the flock count on neighboring transects. We additionally found no significant relationships between
the number/density of flocks per transect and the sizes of those flocks, which fits our assumption of
independence in marks and points.

To determine the appropriate model to describe the observed number of flocks per transect (the
point process), we tested the fit of four distributions to the transect-level flock counts: zero-inflated
Poisson, zero-inflated geometric, and zero-inflated negative binomial, as well as the standard negative
binomial (Appendix A). The data were fit separately for Common eiders, Long-tailed ducks, and scoter
species and we included an offset for transect area (to account for variable transect lengths), which
was standardized by dividing the area of each transect by the mean of all transect areas. We fit each
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model using maximum likelihood estimation (MLE) in the program R (version 2.13.2; R development
Core [40]) with the VGAM package [50].

For the flock size data (the marks), we fit seven discrete distributions with positive integer support
(because there are no flocks of size zero): positive Poisson, positive negative binomial, positive
geometric, logarithmic, discretized lognormal (a discretized version of the continuous lognormal,
truncated to a minimum of one), zeta (discrete power law), and Yule-Simon (which we refer to
as the Yule) distributions (Appendix B). We modeled the data for species groups separately using
each statistical distribution [40]. We again estimated the parameters for distributions using MLE in
the program R (version 2.13.2; [40]). We used the VGAM package [50] to estimate parameters for
the positive Poisson, positive negative binomial, positive geometric, and logarithmic distributions.
We used the methods and code provided in Clauset et al. [10] to estimate the parameters for the
discretized lognormal, the zeta, and the Yule distributions. In applying the zeta distribution, both a
shape parameter as well as a threshold (sometimes referred to as xn,, ) can be estimated, below which
data are excluded from the analysis. This is sometimes done because it is hypothesized that power law
distributions may occur only above some minimum value for a given data set [10]. Because we were
interested in fitting each of these distributions to the complete dataset, we set the threshold equal to
one for the zeta distribution (and other distributions, where applicable).

For both the points and marks, we calculated the log-likelihood of each model. We used the
likelihoods to calculate Akaike’s Information Criterion corrected for finite sample sizes (AICc), which
we then used to rank the models [6]. We further assessed model fit using the Vuong closeness test [47]
for pair-wise comparisons of the best fitting models to the flock size data (marks). The Vuong is a
likelihood-ratio test that measures whether one model is closer than the other to the unknown true
model using the Kullback-Leibler information criterion [47] and can be derived for both nested and
non-nested models. The benefit of using the Vuong test is that it allowed us to evaluate the hypothesis
that models ranked higher based on AlICc were significantly closer to the true data-generating model
than lower-ranked models through estimation of a p-value. We implemented the Vuong test by
generalizing the “vuong” function for non-nested models (because all top models turned out to be
non-nested) in the pscl package in program R [51]. We then compared parameter estimates for the
top models for each species group.

3. Results

There were 1742, 2709, and 4047 flocks observed from 2009 to 2011 for Common eiders, Long-
tailed ducks, and scoters, respectively, with the total number of individuals being 28,968 Common
eiders, 30,677 Long-tailed ducks, and 55,859 scoters. The number of flocks per transect ranged from
0 to 95 for Common eiders, 0-130 for Long-tailed ducks, and 0-104 for scoters. Even after accounting
for species ranges, there were a large number of transects in which no flocks were observed: 166 out
of 327 for Common eiders, 413 out of 681 for Long-tailed ducks, 525 out of 936 for scoters.

Flock size ranged from 1 to 2000 for Common eiders, 1-750 for Long-tailed ducks, and 1-5000
for scoters with the median flock size equal to three for Common eiders and Long-tailed ducks and
four for scoters. However, the standard deviation of flock size was quite high: 94 for Common eiders,
39 for Long-tailed ducks, and 112 for scoters. These statistics and plots of log-frequency versus log-
abundance (Fig. 1) demonstrate the right skew of the flock size distributions.

3.1. Distribution of number of flocks per transect

The negative binomial distributions (zero-inflated and standard) were the best fitting distributions
for the data on the number of flocks per transect for all species groups (Table 1; this was also
true for the three scoter species identified to species—results not shown). For the Common eider,
the zero-inflated negative binomial distribution had a slightly higher log-likelihood (and hence
lower AICc value) than the standard negative binomial. In the case of the Long-tailed ducks and
scoters, the zero inflation parameter was estimated to be zero, collapsing to the standard negative
binomial distribution. The zero-inflated geometric and Poisson distributions had considerably lower
log-likelihoods and comparably poorer fits to the data (Table 1).
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Fig. 1. Model fits (lines) and observed probabilities (black dots) for count data (marks) for the three species groups: Common
eiders, Long-tailed ducks, and scoters. Fits are shown for the top 5 models: logarithmic, discretized lognormal, zeta, Yule, and
positive negative binomial. The positive negative binomial fit is not visible because it is obscured by the logarithmic fit.

Table 1

Log-likelihood and parameter estimates for distributions fit to data on the number of flocks per transect for Common
eiders, Long-tailed ducks, and all scoters combined. Likelihoods are presented because likelihood rankings were identical to
AICc rankings (sample sizes were relatively large and the number of parameters for all fitted models ranged from 2 to 3).
Specifications for each distribution are given in Appendix A. The parameter ¢ is the zero inflation parameter (ranging from 0
to 1) and is the probability of a structural zero. The second to last column shows the observed (sample) mean number of flocks
per transect for each species (bold) and estimates of the mean under each distributional assumption. Note that the MLE of the
negative binomial distribution is the sample mean by definition. The last column shows the observed proportion of transects
without flocks (bold) and the proportion estimated under each distributional assumption. The zero inflated negative binomial
is excluded from this table for the Long-tailed ducks and scoter species because the zero-inflated parameter was estimated to
be zero, collapsing the distribution to a standard negative binomial.

Log-likelihood 7 Parameter estimates Meanflocks  Transects with
pertransect  no flocks
Common eiders 5.33 0.51
Zero inflated negative binomial —727.72 0.19 n =720 k=043 581 0.43
Negative binomial —743.24 n =533 k=024 533 0.48
Zero inflated geometric —885.62 0.07 p=0.55 1.12 0.57
Zero inflated Poisson —1444.37 0.56 A =9.57 4.18 0.49
Long-tailed ducks 3.98 0.61
Negative binomial —1162.43 n=3.98 k=0.21 3.98 0.54
Zero inflated geometric —1644.99 0.05 p = 0.66 1.86 0.68
Zero inflated Poisson —2270.05 0.45 A =6.82 3.73 0.45
Scoters 4.32 0.56
Negative binomial —1782.63 n =432 k=020 432 0.53
Zero inflated geometric —2286.72 0.07 p =0.59 133 0.61
Zero inflated Poisson —4280.94 0.49 A =7.80 4.00 0.49

3.2. Distribution of flock sizes

The discretized lognormal distribution produced the best fit to the data for flock sizes of all three
species groups (Table 2; Fig. 1). This was a consistent result applying to all species together (Fig. 2),
each species separately (including the three scoter species when identified to species; results not
shown) and each species separately by year (2009-2011; results not shown). In all cases, the dis-
cretized lognormal had the lowest AICc value when compared to the other six candidate distributions
and had a significantly better fit compared to the other top models as inferred from Vuong pair-wise
closeness tests (Table 2). The next best models varied by species group with the logarithmic, Yule,
zeta, and positive negative binomial distributions all producing reasonable (although inferior) fits to

Please cite this article in press as: E.F. Zipkin, et al., Fitting statistical distributions to sea duck count data: Implications for
survey design and abundance estimation, Statistical Methodology (2012), doi:10.1016/j.stamet.2012.10.002




EF. Zipkin et al. / Statistical Methodology I (REIN) INE-HER 7

Table 2

Model selection results for each model fit to non-zero flock size data for Common eiders, Long-tailed ducks, all scoter species
combined. Log-likelihood values are shown in the diagonals. Likelihoods are presented because likelihood rankings were
identical to AICc rankings (sample sizes were relatively large and the number of parameters ranged from 1 to 2 for all
fitted models). The off-diagonals report the p-values from pair-wise Vuong closeness tests. In all pair-wise comparisons, the
distribution with the lower log-likelihood value was also identified as the best (closest to unknown true model) by the Vuong
test statistic. However, the values in grey show when the difference was not significant. The positive Poisson and geometric
models are excluded from our comparison because their likelihoods indicated very poor fits to our data (Common eiders:
—6585.6 geom, —61,046.0 pois; Long-tailed ducks: —9160.3 geom, —48,029.6 pois; scoters: —14,519.5 geom, —111,268.9 pois).

Common eiders

Discretized  Yule Zeta Logarithmic Positive negative
lognormal binomial

Discretized lognormal —5227.0

Yule <0.001 —5347.9

Zeta <0.001 <0.001 —5404.8

Logarithmic <0.001 0.049 0.333 —5425.5

Positive negative binomial <0.001 0.041 0.304 <0.001 —5429.3

Long-tailed ducks
Discretized  Yule Logarithmic Positive negative ~ Zeta
lognormal binomial

Discretized lognormal —7718.0

Yule <0.001 —7922.1

Logarithmic <0.001 0.394 —7931.6

Positive negative binomial <0.001 0.352 <0.001 —7935.9

Zeta <0.001 <0.001 0.007 0.007 —8022.5

Scoters
Discretized  Logarithmic Positive negative  Yule Zeta
lognormal binomial

Discretized lognormal —12312.9

Logarithmic <0.001 —12764.7

Positive negative binomial <0.001 <0.001 —12774.4

Yule <0.001 0.126 0.149 —12901.7

Zeta <0.001 0.005 0.008 <0.001 —13069.6

the data (Table 2; Fig. 1). For all three species, the positive negative binomial had a very similar, al-
though slightly inferior fit as compared to the logarithmic distribution using AICc and Voung tests
(e.g., the positive negative binomial model is obscured by the logarithmic in Fig. 1). This is consistent
with the fact that the logarithmic distribution is a limiting case of the negative binomial [39,29] and
that the shape parameter in the negative binomial for all species was close to zero (Table 3). This was
also true for the Yule and zeta distributions, whose fits were qualitatively very similar, although the
Yule outperformed the zeta for all species by AICc and Vuong tests (Table 2). The geometric and pos-
itive Poisson models were the worst fitting models in all cases with likelihoods much lower than the
other models (see caption for Table 2) and were thus excluded from further consideration.

In all comparisons, the direction of the Vuong test statistic supported the ranking of model fits by
their AICc values (and by their log-likelihoods). The discretized lognormal had a significantly better
fit as compared to the other six distributions for all three species groups (Vuong tests, p < 0.001;
Table 2). In all other pair-wise comparisons, the distribution with the highest likelihood value was
judged closer to the true model than the inferior model, although in some situations the difference
between models was not significant.

Fig. 2 shows log-probability versus log-abundance plots for each distribution for simulated data
using parameter values as estimated by maximum likelihood fitting to combined flock size data
from all species (Fig. 2 column 1) as compared to the actual data of all species groups combined
(Fig. 2 column 2). The figure demonstrates that the positive Poisson, positive geometric, logarithmic,
and positive negative binomial distributions are unable to account for the large flocks sizes that are
observed in the data while the zeta and Yule are capable of producing flock sizes that are much larger
than observed in the data. Fig. 2 highlights the superior fit of the discretized lognormal distribution —
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Table 3

Parameter estimates for the top five models to the flock size data for: all species combined, Common eiders, Long-tailed ducks,
and scoters (listed in order by AICc). The values shown are the parameters for each distribution as described in Appendix B.
The six right-most columns of the table give summary statistics of the observed flock size data for each species (bold) as well
as summary statistics of simulations of flock size under each fitted distribution. The summaries for each distribution are the
mean values based on 10,000 simulations using each species’ parameter estimates and size of the sample data. The last column
is the standard deviation of the maximum count over the 10,000 simulations. Note that the MLE parameters for the negative
binomial and logarithmic distributions are such that the estimated mean of the distribution is the sample mean by definition.

Parameter estimates st Median Mean 3rd Max SD (max)
quartile quartile

All species 2 3 13.59 9 5000
Discretized lognormal n = 1.093 o = 1478 2.00 4.00 10.03 9.11 993.72 634.77
Logarithmic p = 0.982 1.89 445 13.59 14.50 343.81 58.40
Positive negative binomial ~ u© = 0.438 k = 0.008 1.96 4.63 13.54 14.57 338.26 59.22
Yule a=0.610 1.00 2.00 46E+406 7.88 39E+10 3.3E+12
Zeta a=0.518 2.00 4.00 2.0E4+07 14.56 1.7E+11 9.6E+12
Common eiders 2 3 16.63 9 2000
Discretized lognormal n = 0.866 o = 1.680 1.14 3.40 11.83 9.45 959.22 843.11
Yule a = 0.609 1.00 2.03 3.6E4+04 7.84 6.2E4+07 1.7E+409
Zeta a=0.521 2.00 3.96 14E+408 14.37 24E+11 22E+13
Logarithmic p = 0.986 1.97 5.05 16.63 17.34 347.07 75.37
Positive negative binomial ~ p = 0.419 k = 0.006 1.99 5.13 16.89 17.69 350.89 76.29
Long-tailed ducks 2 3 11.32 7 750
Discretized lognormal n = 0.886 o =1.526 1.03 3.01 9.13 8.16 649.26 459.21
Yule a = 0.652 1.00 2.00 1.5E+04 6.84 41E+07 15E+09
Logarithmic p =0.977 1.16 4.00 11.33 12.33 23147 47.87
Positive negative binomial = 0.314 k = 0.008 1.23 4.00 11.29 12.35 227.77 46.70
Zeta a = 0.548 2.00 3.64 8.2E+05 12.56 22E+09 1.0E+11
Scoters 2 4 13.80 10 5000
Discretized lognormal n=1.286 o=1369 200 4.00 9.97 9.94 589.93 359.30
Logarithmic p = 0.982 1.85 4.57 13.80 14.71 315.93 60.20
Positive negative binomial ~ © = 0.919 k =0.017 1.98 4.90 14.04 15.15 313.52 61.90
Yule a=0.586 2.00 2.06 12E+05 848 49E+08 13E+10
Zeta a = 0.498 2.00 4.00 9.0E4+07 16.20 3.6E+11 24E+13

which best captures the range of variation observed in the right tail - to the sea duck data as compared
to the other six distributions.

The parameter estimates for the top models were comparable among species groups with esti-
mates generally being more similar between Common eiders and Long-tailed ducks as compared to
scoters (Table 3). In the parameterization of the zeta and Yule distributions that we present (Ap-
pendix B), the mean is not finite for values of a < 1 [10,50], yet for all three species groups the
maximum likelihood estimates for these parameters were less than one. Thus, in order to compare
the output from the fit of each statistical distribution, we simulated count data for each species group
that was the size of the sample data (nai = 8498; Ncommon eider = 1742; Nigng-tailed ducks = 2709;
Nscoters = 4047) 10,000 times and report the mean values for the summary statistics (Table 3). These
results demonstrate the relationship between sample moments and moments of MLE fitted distri-
butions. Note that the mean of the fitted logarithmic and negative binomial distributions match the
observed sample mean (as expected given that the sample mean is the maximum likelihood estimator
of the negative binomial and logarithmic means), but result in too many moderately large groups (3rd
quartile), too few very large groups (maximum), and an underestimation of the variance observed
in the data. Thus, although the fitted negative binomial and logarithmic distributions describe the
mean of the data well, they mischaracterize other aspects of the data distribution and underestimate
uncertainty about the mean. On the other end of the spectrum, the Yule and zeta distributions have
unrealistically heavy tails and overestimate the variance in the counts. For example, the average stan-
dard deviation of flock size for all species combined (as estimated from simulations) was 1.15E+09
for the zeta distribution as compared to 25.8 for the discretized lognormal and 23.6 for the nega-
tive binomial (and 91.1 in the observed data). Although the standard deviation of flock size is only
slightly higher with the discretized lognormal as compared to the logarithmic and negative binomial
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Fig. 2. Simulated (left column) and observed (right column) data for all species fitted using the seven distributions that we
compared. Note the variable x-axes for the simulated data.

distributions, the latter two distributions are more likely to underestimate maximum flock size (last
column, Table 3). The discretized lognormal distribution best matches the range of the observed data
(Fig. 2, Table 3) but it also consistently underestimates the mean flock size, in part because it pro-
duces too few very large counts. Thus, while the discretized lognormal captures the variance and the
upper tail probability of the data somewhat better than the other distributions (negative binomial
and logarithmic underestimate upper tail probability and variance; zeta and Yule overestimate up-
per tail probability and variance), this comes at a cost to efficient estimation of the mean (negative
bias of 20%-30% in our simulations). Given this result, Poisson mixture distributions may currently be
preferable for abundance estimation, assuming reasonable variance corrections can be incorporated.
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4. Discussion

We described a marked point process framework for modeling flock numbers and flock sizes
to characterize sea duck distribution and abundance in the Atlantic. We employed model selection
techniques to choose appropriate models for skewed and zero-inflated distributions of flock numbers
and highly right-skewed distributions of flock sizes. Our process-oriented approach should be useful
in modeling other highly aggregated, patchily distributed species. The distributions that best fit
the “points”, i.e., the number of flocks per transect, (negative binomial and zero inflated negative
binomial) and “marks”, i.e., the flock sizes, (discretized lognormal) were surprisingly consistent across
sea duck species and did not vary among years.

Our results have important implications for estimating annual abundances of wintering sea ducks
and for designing future surveys that will be able to generate information on population statuses and
trends. Inappropriate choice of the distribution family in a modeling framework can lead not only
to bias in parameter estimates, but to inaccurate assessments of uncertainty and statistical power.
Appropriate characterization of uncertainty and estimation of statistical power are of particular
importance in a management context because uncertainty will be propagated through decision-
making processes and will affect our understanding of population dynamics, as well as the design
and implementation of future monitoring programs. For example, national harvest regulations for
many species of ducks are set annually by the US Fish and Wildlife Service using population estimates
derived from aerial surveys of breeding areas (e.g., [46,48]); these regulatory decisions are informed
by predictions from models of population dynamics that are also derived from survey estimates.
Because the sea ducks considered here breed in remote areas that are not covered by current surveys,
estimates from winter areas may provide our best means of monitoring responses to exploitation
and environmental change, but only if estimates from winter surveys can correctly and precisely
estimate abundance. Our results are also particularly relevant to applications that require proper
modeling of the extreme values of abundance observed for many species and where surveying
presents logistical challenges, thereby limiting the number of samples collected. This includes risk
and impact assessments, as well as detection of high-use areas. As marine environments along the
eastern United States are currently being considered for development of wind energy production [5],
sufficient survey methods and accurate maps are critically needed to assess the potential impacts of
the proposed development on sea ducks and seabirds.

The best-fitting distributions for flock size in our study (discretized lognormal, logarithmic,
negative binomial, Yule, and zeta) differ from each other primarily in the shape of the upper tail. The
probability mass of the zeta distribution declines log-linearly in the tail (that is, linearly on doubly
logarithmic axes), and the Yule distribution nearly so, making them the heaviest tailed distributions
in our candidate set. This is evident in the relatively common occurrence of very large counts in
these distributions (column one in Fig. 2, Table 3). The probability mass of the upper tail of the
discretized lognormal distribution declines in a log-quadratic fashion, whereas the logarithmic and
negative binomial display an exponential decay in the upper tail. Thus, the heaviness of tails in
these distributions is ranked as follows: zeta &~ Yule > discretized lognormal > logarithmic ~
negative binomial. That the discretized lognormal distribution was consistently selected for our three
sea duck species groups suggests that the upper tails of flock size distributions for these species
are not exponentially bounded (logarithmic and negative binomial), but not as extreme as would
be predicted under power law-type distributions (e.g., zeta, Yule). This is fortunate for abundance
estimation, because power law behavior implies that the variance (for a < 2) and mean (fora < 1)
are not finite; that is, that sample moments would increase with the area and time spent sampling
rather than providing estimates of meaningful characteristic properties of the abundance distribution.

The lognormal distribution has a long history in ecology (e.g., [38]) and a diversity of other
fields [27] where it often arises as a plausible alternative to other heavy-tailed distributions like
power laws (e.g., in birds; [1]). One classical generative process for a lognormal distribution is
the multiplicative stochastic growth process first proposed by Gibrat [16], in which the size of an
entity changes by successive multiplicative random effects; if the multiplicative random effects are
independent and lognormally distributed, then the size distribution will be lognormal. The lognormal
distribution arises even more generally as a direct consequence of the Central Limit Theorem for
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products of random variables; any process that involves the product of a sufficiently large number
of independent and identically distributed random variables having any distribution with finite mean
and variance has a limiting lognormal distribution. Thus, a discretized lognormal distribution of counts
could arise from a variety of plausible ecological mechanisms. However, the lognormal distribution
is known to produce biased estimates of the mean and variance when it is “contaminated” with even
small amounts of data from other distributions [32]. In our dataset of flock sizes, the discretized
lognormal underestimated the sample mean for all three species (Table 3), which suggests that our
data may not conform perfectly to a lognormal distribution. One possible reason for small deviations
from lognormality might be nonstationarity in the underlying process. It may be possible to control
for this problem by stratifying areas of high/low abundance or adding covariates that account for
changes in group sizes, such that the conditional distribution is closer to lognormal. The lack-of-fit of
the lognormal may also reflect the manner in which observers count birds in aerial surveys: singles
and pairs have a higher probability of being undetected [37], whereas flocks with more birds are
typically undercounted [35]. Further exploration of the counting process and the relationship of the
observed counts to actual sea duck flock sizes might help explain the disparity between the observed
and lognormal tails. The ultimate choice of which distribution is the most appropriate depends
on the modeling purpose. In our case, the discretized lognormal was identified as the best fitting
distribution overall, and therefore might be the best choice for simulation modeling that requires a
compact representation of the whole distribution. Yet, given the sensitivity of moment estimators
to slight deviations from the lognormal distribution [32], one might be justified in choosing a
statistical distribution with a lower total log-likelihood that can provide more robust mean abundance
estimates, such as the logarithmic or negative binomial distributions. Simulation studies could help
to choose the optimal distribution for particular applications.

Bonabeau et al. [4] suggested that an exponentially decaying power law may be a useful distri-
bution for dealing with heavy-tailed data that is bounded. To determine the appropriateness of the
exponentially decaying zeta distribution compared to our top performing models, we additionally fit
this distribution to flock size data for the three species groups. While the exponentially decaying zeta
distribution had greater log-likelihood values (—5324.3 for Common eiders, —7854.3 for Long-tailed
ducks, and —12 713.0 for scoters) than either the zeta or Yule (suggesting a comparatively better fit;
Table 2), it was still outperformed by the discretized lognormal (p < 0.001 in Vuong pair-wise com-
parison tests and lower AICc) for all three species groups, supporting the hypothesis that our data,
while skewed, are less heavy-tailed than distributions in the power law family. Although the expo-
nentially decaying power law may not produce a better fit to our data than the discretized lognormal, it
may provide a useful alternative because of the above mentioned problems associated with estimating
the moments of lognormal distributions when the lognormal is not a perfect fit. By no means did we
present an exhaustive list of possible statistical distributions for modeling skewed count data. We sug-
gest further exploration of the exponentially decaying zeta distribution, as well as other distributions
as possible alternatives to the discretized lognormal, when abundance estimation is the objective.

It is important to note that selection among statistical distribution models that differ primarily
in their tails is notoriously difficult with small sample sizes and noisy data [2,10]. We have used
data from a very large survey, but many ecological datasets are substantially smaller and would not
allow discrimination among the more similar of the models studied here [32]. This suggests a useful
role for meta-analysis, synthetic analysis of large databases, and validation of mechanistic models
of processes determining group size distributions, so that recommendations for appropriate choices
of distributions can be made for selection of distributions on the basis of taxonomy, life history,
environment, etc. The similarity in model fits among species, species groups, and years is encouraging,
as it suggests that model power and estimator precision for individual species groups can be gained
by borrowing information both over time and across species [48].

Many mechanistic models of group size formation and aggregation have been proposed to give rise
to several of the distributions studied here. For example, Caraco [8], Niwa [33] and Ma et al. [29] have
each demonstrated how differing rules related to the decision on when to join or leave groups can lead
to negative binomial, decaying power law, and logarithmic distributions of group size, respectively.
However, in our sea duck example, flock detection and flock size counts are likely the result not
only of the biological processes associated with flocks coalescing, but also the specific fixed-width
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sampling protocol used during the surveys (i.e., the observation process). In this case, the negative
binomial distribution combined with the discretized lognormal produced the best fit to our marked
point process for observed number of flocks and flocks sizes, but it is possible that other sampling
approaches could yield different combinations. Counting large flocks on the ocean within a 200 m strip
while in a fast moving airplane is a difficult task, but one that can be improved through training and
revised protocols. Beauchamp [2] noted that rough conditions at sea could bias counts and possibly
alter which statistical distribution fits best to observed flock sizes. Further exploration of how to
minimize and account for the effects of the observation process, such as including covariates, detection
functions, and upper limits imposed by the size of the observation unit, may lead to more accurate
and precise counts and better estimates of uncertainty, allowing for improved understanding of the
biological mechanisms that produce variation in sea duck flock sizes.

Statistical models of ecological count data can be far more complex than those presented
here. It is common to include spatial, temporal, and habitat strata, environmental and biological
covariates influencing ecological processes leading to the presence or absence of a species, and
sampling covariates, which can affect the detection process of individuals during surveying. We
intentionally focused our study on simple distributional models for avian count data, neglecting
additional complexity that may in some cases improve model explanatory power. It is fundamental
to first determine what form of the underlying statistical distribution is appropriate before real world
complexities can be incorporated into models. Our marked point process approach matches the
observational process (e.g., seeing a flock, then determining its size) and readily allows for inclusion
of covariates for both flock detection and flock size estimation.

A parsimonious approach is recommended for a second reason: large scale monitoring programs
often do not have the capacity to collect, maintain, and utilize extensive ancillary data sets, and long-
term changes in distribution, abundance, or phenology may make models calibrated to fixed strata
(e.g., the study area; areas of high density) inappropriate or inefficient at large scales. Thus, simple
descriptions that generalize across species and years are extremely valuable, when possible. Our
results suggest that the sea duck counts based on our survey methodology have similar statistical
properties, and comparable models can be used over time and across species. These models will
form the basis for continued exploration aimed at identifying the covariates affecting wintering sea
duck populations, and providing decision makers with the best possible description of sea duck
distributional patterns and trends.
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Appendix A

Parameters and probability mass functions for the four distributions that we compare using the
data on the number of sea duck flocks per transect. In all cases, the supportis x € {0,1,2,3,...}.
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Specifications of all distributions are as in the VGAM R package [50].
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Appendix B

Parameters and probability mass functions for the seven distributions that we compare using the
sea duck flock size data. In all cases, the support is x € {1, 2, 3, .. .}. Specifications of all distributions
are as in the VGAM R package [50] except for the discretized lognormal which is specified as in Clauset

etal. [10].
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